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ABSTRACT 

The relative decline of single-threaded processor performance, 
coupled with the ongoing shift towards on chip parallelism 
requires that CAD applications run efficiently on parallel 
microprocessors. We believe that an ad hoc approach to 
parallelizing CAD applications will not lead to satisfactory 
results: neither in terms of return on engineering investment nor in 
terms of the computational efficiency of end applications. Instead, 

we propose that a key area of CAD research is to identify the 
design patterns underlying CAD applications and then build CAD 
application frameworks that aid efficient parallel software 
implementations of these design patterns. Our initial results 
indicate that parallel patterns exist in a broad range of CAD 
problems. We believe that frameworks for these patterns will 
enable CAD to successfully capitalize on increased processor 
performance through parallelism.  

Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Parallel Programming 
D.2.11 [Software Architectures]: Patterns 
J.6 [Computer-aided Engineering]: Computer-aided Design 

General Terms 
Algorithms, Design 

Keywords 

Pattern, Framework, Manycore, Parallelization 

1. WHY MANYCORE PARALLELISM?  
The decline of single-thread performance increases over the 

past half-decade has been well documented and understood [2].  
Current and future performance increases will be provided 
primarily through increased on chip parallelism.  Consequently, 

computationally demanding applications are moving towards 
parallel implementations.  Movements towards parallelism in the 
past were always dominated by continual improvements in single 
thread performance, which made computational speedups due to 
parallelism less attractive, especially when viewed from an 
economic return on investment perspective.  The realities of 
semiconductor manufacturing today have now led the entire 
industry towards parallelism in order to continue scaling 

application performance.   
When discussing parallel software, it is useful to distinguish 

between multicore parallelism, designed for an evolutionary path 
where the number of cores slowly evolves from 1!2!4!.., and 
manycore parallelism, in which the ramp up of cores rises much 

more quickly: 32!64!128!.  Current x86 microprocessors, 
such as the Intel Core 2 Duo, are an example of multicore 
platforms, whereas graphics processors, such as the G80 from 
Nvidia with 128 processors on a die, are an example of manycore 
processors, despite not being truly general purpose. 

Superficially, it appears that CAD researchers must decide 
whether to pursue an implementation strategy that targets the 
multicore evolutionary path or manycore parallelism. However, 

parallel programmers commonly observe that programming for 
greater than 32 cores is fundamentally different than programming 
for smaller numbers of cores. Thus, as Moore’s Law will easily 
enable 32 cores per die even on the slower multicore path, it 
seems important to target manycore targets today. Although 
parallelism at this scale can be difficult to extract, it will be 
necessary within the near future.  Therefore, as we re-architect 
CAD software for parallelism, we must keep large scale 

parallelism in mind. 

2. COARSE-GRAINED PARALLELISM IN 

CAD  
Because CAD is so computationally demanding, parallelism 

has been applied to CAD for some time. A few basic approaches 
have broad application, such as: running a number of scripts and 
choosing the best result (logic synthesis); running a variety of 
different initial starting points (floorplanning, placement); running 
(or generating) independent vector sequences (simulation/testing) 
or Monte-Carlo simulation (capacitance extraction).  It will be 
important to continue to exploit such coarse-grained parallelism in 

the future; however, because most of these approaches act on the 
entire design at once, it is not clear that memory and I/O 
capabilities associated with individual processors in multicore and 
manycore architectures will efficiently accommodate this kind of 
parallelism due to the heavy memory requirements associated 
with processing a complete design. Thus, while we will continue 
to exploit coarse grained parallelism at the system level, we must 
also seek ways to exploit finer-grained parallelism with a single 

processing element. 

3. FINE-GRAINED PARALLELISM IN CAD 
While it is easy to parallelize multiple independent runs of 

CAD software, it is less clear how to parallelize a single 
invocation of a CAD operation such as logic optimization, static-

timing analysis, floorplanning, or placement. Past experience in 
high-performance computing as well as early attempts at 
parallelizing CAD applications have shown us that simply 
incrementally re-coding existing CAD software using POSIX 
Threads, OpenMP, or MPI is unlikely to produce acceptable 
results. Nor are there parallel programming languages or 
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programming models which are mature enough to allow CAD 
application developers to migrate their applications to parallel 
targets in a timely manner. Improved compiler support and 
implicit programming models [53] will surely help; however, we 
believe that such approaches will not suffice to fully utilize future 

manycore targets. Thus, our position is that CAD applications 
need to be re-architected for parallel targets. This does not mean 
that every significant element of CAD software needs to be 
recoded. Instead, as we will see in the example in Section 6, with 
the proper architectural structure, many key CAD algorithms, 
such as the battery of optimizations in logic synthesis, do not need 
to be rewritten. Before examining this in detail, we give a 
summary of the general principles of architecting parallel 

software. 

4. PARALLEL SOFTWARE 

ARCHITECTURE USING PATTERNS AND 

FRAMEWORKS  
As described by Christopher Alexander, design patterns 

describe time-tested solutions to recurring problems within a well-
defined context [1].  An example of a design pattern is 

Alexander’s “family of entrances” pattern, which addresses the 
recurrent problem of allowing easy comprehension of multiple 
entrances for a first-time visitor to a site. A pattern language is a 
collection of related and interlocking patterns, constructed such 
that the patterns flow into each other as the designer solves a 
design problem.  The pattern language is implicitly organized to 
reflect a design methodology. Because every designer sees a given 
problem from a unique perspective, design patterns are not 

defined such that each problem has a unique path through the 
pattern language.  Instead, a pattern language serves as a guide to 
the architect, helping to define common problems and codifying 
useful solutions.  In other words, a pattern language does not 
impose a rigid methodology.  Instead, it supports designers as they 
reason about an architecture by providing a common vocabulary 
to describe the problems encountered during the design process, 
as well as giving reference to a collection of useful solutions. 

The observation that patterns and pattern languages could be 

useful for software architecture is not new; in fact there is an 
established community of researchers defining pattern languages 
for software architecture. While principally focused on lower-
level implementation details, one influential work on patterns for 
software design is the book Design Patterns: Elements of 

Reusable Object-Oriented Software, which outlined a number of 
patterns useful for object-oriented programming [10].  Another 
work we have found useful is an Introduction to Software 

Architecture [11], which describes a variety of structural patterns 
useful for organizing software. Patterns for Parallel 

Programming [16] was the first attempt to systematize parallel 
programming using patterns.  Recently, the Berkeley View reports 
[2][3] presented a set of 13 computational “dwarfs”, which are 
best understood as design patterns for programming. 

Patterns are conceptual tools which support a programmer’s 
ability to reason about a software project, but they are not an 

implementation mechanism.  A programming framework is a 
software environment that supports the implementation of the 
solution proposed by the associated design pattern.  The 
difference between a programming framework and a general 
programming model or language is that in a pattern framework the 
customization is performed only at specified points that are 
harmonious with the style embodied in the original design pattern. 
An example of a successful sequential programming framework is 

the Ruby on Rails framework that is based on the Model-View-
Controller pattern. Users of the framework have ample 
opportunity to customize the framework but only in harmony with 
the core Model-View-Controller pattern.  

Frameworks include libraries, code generators, and runtime 

systems, which assist the programmer with implementation by 
abstracting difficult portions of the computation and incorporating 
them into the framework itself. In the past, parallel frameworks 
have not generally been designed by careful examination of 
recurrent problems in application domains, but instead were 
imposed by assumptions made by framework developers.  We 
believe that basing frameworks on pervasive design patterns will 
make parallel frameworks more broadly applicable. 

To summarize, implementing parallel software using patterns 
and frameworks involves identifying the patterns that underlie 
computations, constructing frameworks that assist in developing 
the parallelism in a given computation while mapping well to 
parallel hardware, and then using the frameworks to construct 
parallel applications.  To apply this approach to CAD the first step 
is to identify the key design patterns in CAD. To be more specific 
about this step, the next section identifies the dominant design 

patterns encountered in a contemporary RTL synthesis CAD flow.  

5. DESIGN PATTERNS AND 

FRAMEWORKS FOR CAD 

5.1 Design Patterns in CAD 
In the following we perform a reasonably comprehensive 

survey of the applications in a register-transfer level (RTL) 
synthesis flow, and summarize the key design patterns. Our 
methodology [2][3] is to first reduce an application to its key 
design patterns, and then use frameworks for the design pattern to 

facilitate the parallel implementation of the application. 

5.1.1 Hardware-Description Language (HDL) Synthesis: 
Graph Algorithms: 

Given a description of a circuit in a HDL such as Verilog, 
perform a syntax-directed translation and graph-rewriting rules to 
create a circuit netlist. Note we refer to a graph algorithms pattern 
rather than a graph traversal pattern as in [2], because problems 
like graph partitioning are solved by graph algorithms but not 
graph traversal. 

5.1.2 Technology Independent Optimization: 
Graph Algorithms: 

Contemporary approaches using And-Invert-Graphs are 
graph-oriented [45]. 
Backtrack and Branch-and-Bound: 

The ESPRESSO family of algorithms [46] relies on branch-
and-bound techniques to minimize two-level logic.  

5.1.3 Technology Mapping: 
Graph Algorithms: 

Although they use dynamic programming, techniques such as 
DAGON [30] and the Lehman-Watanabe Algorithm [31] are 
probably better viewed as local graph rewriting approaches than 

general uses of the dynamic-programming design pattern. 

5.1.4 Delay Modeling:  
Dense and Sparse Linear Algebra: 

Newton-Raphson methods can be used to solve the 
interdependent setup/hold time of latches and registers [44]. This 
method relies heavily on matrix computations. 

5.1.5 Timing Analysis:  
Graph Algorithms: 
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Computation for finding the critical path in a circuit is based 
on computing the longest path in a graph. The computation for 
identifying hold time violations is based on computing the 
shortest path in a graph. Statistical considerations can be added in 
this formulation.  

Backtrack and Branch-and-Bound: 
The elimination of false paths and the computation of the 

floating-mode delay [33] require a search using techniques similar 
to those employed in circuit testing (cf. 5.1.14). 
Sparse Linear Algebra: 

Path-based statistical static timing analysis can be formulated 
as a sparse matrix problem [32].  

5.1.6 Sequential Circuit Optimization: 
Graph Algorithms: 

Retiming involves constructing the retiming graph and 

manipulating it using graph algorithms [29]. Clock schedule 
optimization may be solved by traversing the circuit netlist,  
updating clock information [34]. 

5.1.7 Floorplanning: 
Graph Algorithms:  

The sequence pair method [23] transforms the sequence pair 
into a constraint graph, and then reconstructs the floorplanning 
topology. B*-tree [6] and TCG-S [14] both manipulate graph 
representations of the floorplanning topology directly. 
Map Reduce:  

Simulated annealing approaches to floorplanning, such as [47], 
can be cast as Map Reduce operations.  

5.1.8 Placement: 
Dense Linear Algebra: 

Most analytical placers use some iterative nonlinear objective 
solvers to optimize the objective function. NTUplace3 [7] and 
APlace [12] use the conjugate gradient method, while mPL6 [5] 
uses the Uzawa iterative algorithm.  
Graph Algorithms: 

There are several placers that use graph partitioning 

techniques [48] to resolve the overlapping problem among cells. 
For example, Capo [17], Dragon [20], and GORDIAN [13]. 
Sparse Linear Algebra: 

Some placers use sparse quadratic programming methods to 
minimize the wire length. RQL [21], Kraftwerk[19], FastPlace3 
[22], and GORDIAN [13] all apply this method. 
Structured Grid: 

The FastPlace3 [22] uses iterative local refinement technique 

to refine the placement in a grid by the placement situation in 
nearby grid. 

5.1.9 Global and Detailed Routing: 
Graph Algorithms:  

For Steiner tree construction, FLUTE [9] traverses each net, 
partitioned by its coordinates, and then maps each partition to a 
pre-optimized routing table. For global routing, FastRouter2.0 [18] 
and BoxRouter2.0 [8] both use rip-up-and-reroute with maze 
routing to refine the routing results. DUNE is a gridless detail 
router that manipulates the connection graph [24]. 

Dynamic Programming:  
During the rip-up-and-reroute phase, FastRoute2.0 [18] uses 

monotonic routing, and DpRouter [4] uses dynamic pattern 
routing. Both are dynamic programming based approaches.  
Backtrack and Branch-and-Bound: 

BoxRouter2.0 [8] uses integer programming to assign wires 
into available spaces.  

5.1.10 DFM 
Graph Algorithms: 

To detect and correct alternating-aperture phase shift masking 
problems Chiang el al. [27] use a conflict cyclic graph and an 
embedded planar graph to represent the layout topology.  
Map Reduce: 

RADAR [26] uses a lithography hotspot map (LHM) to 

approximate the intensity of OPC at different regions. When 
calculating the LHM, RADAR transforms lithography intensity at 
nearby blocks, collects all information, then it reduces them to the 
LHM of the specified region.  

5.1.11 Design Rule Checking and Compaction: 
Graph Algorithms: 

The scanline algorithm [25] traverses the layout of the circuit 
based on the coordinates of the cells. The resulting design rule 
constraint graph may be compacted using longest path graph 
traversal [49]. 

5.1.12 Model Checking: 
Graph Algorithms and Backtrack/Branch-and-Bound: 

Symbolic model checkers, such as NuSMV2 [41], provide 
both BDD-based and SAT-based approaches to solve the problem. 

5.1.13 Equivalence Checking: 
Graph Algorithms: 

Malik et al. propose a BDD-based approach [40] for 
equivalence checking. 
Backtrack and Branch-and-Bound: 

Goldberg et al. use a SAT-based approach [39] for 
equivalence checking. Contemporary approaches judiciously 

apply both BDD and backtracking-based techniques.  

5.1.14 ATPG: 
Backtrack and Branch-and-Bound: 

PODEM [35] was among the first to use backtrack and 
branch-and-bound techniques to generate test patterns, and 
Larrabee uses a SAT-based approach [50].  

5.1.15 Delay Testing: 
Graph Algorithms: 

The hazard-free robust path delay fault testing method [38] 
traverses the circuit graph, generates its ENF, and then finds 
testing vectors.  

5.1.16 HDL Simulation: 
Graph Algorithms: 

Parallel HDL simulation has already been explored using 

agents in a graph structure [51].  

5.1.17 Circuit Simulation: 
Dense Linear Algebra and Sparse Linear Algebra: 

SPICE [43] uses linear algebra to solve the Kirchoff voltage 
and current laws, branch equations, nonlinear equations, and 
differential equations involved in circuit simulation. 

5.2 CRITICAL PATTERNS AND 

FRAMEWORKS 
The prior section indicates that much of CAD can be 

supported by three key design patterns: graph algorithms, branch-
and-bound search, and linear algebra. Linear algebra is the design 
pattern whose parallelism is best understood [54], so we will not 
discuss it further.  Branch and bound algorithms focus on the 
search of very large spaces, so parallel frameworks such as [52] 
have been developed to accelerate the search process.  The load-
balancing and data sharing problems encountered by previous 
attempts at such frameworks will be alleviated by the high degree 

of integration which characterizes future manycore systems, 
enhancing the usefulness of parallel branch-and-bound 
frameworks. The graph algorithms pattern is by far the most 
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widely used pattern in CAD. Unfortunately, it is currently 
relatively weakly supported by parallel frameworks [55]. 
Therefore, the rest of this paper explores the potential for 
developing a parallel graph-algorithms framework that can be 
applied to parallelize CAD. In particular, we explore how the 

concepts of Section 5 can be employed to build a parallel 
framework for logic optimization. 

6. A PARALLEL FRAMEWORK FOR 

LOGIC OPTIMIZATION 
In this section we work through a high-level architecture for a 

parallel logic-optimization framework. At the top level, the 
framework follows the pipe-and-filter structural pattern [11] as is 

shown in Figure 1. For simplicity’s sake we presume the input is a 
textual description of the netlist to be optimized together with user 
constraints regarding timing, area, and power. This textual format 
is parsed, an internal database is built, and then the core function 
of the framework, the actual logic optimization process, is 
performed. Finally, an optimized netlist is produced. Very modest 
amounts of parallelism are available at the steps of input 
processing, database building, and output; however, we presume 

that some parallelism is available at these steps and, further, that 
the time of these steps is modest relative to the time devoted to 
optimization. 

 

Figure 1: A Basic Flow 

The representation of the circuit in the database/repository is the 
key to realizing significant parallelism. At the core of the system 
is an agent-and-repository structural pattern [11] illustrated in 
Figure 2. In this pattern the access of independent agents to the 
central repository is scheduled by a repository manager. In 
general, to provide fine-grained parallelism for graph 
manipulation tasks such as logic optimization, the graph must be 

partitioned.  The first step toward creating this partitioning is to 
divide the netlist into register-bounded sub-circuits. Partitioning 
the netlist in this fashion allows the timing optimization agents to 
operate independently, which maximizes parallelism of the 
optimization. However, there are many engineering challenges to 
developing a register-bounded partitioning of a circuit such as: 
multi-cycle paths, latch-based timing schemes, multi-modal 
operation, and tri-state enables. As a result of these influences the 

number of gates in a single register-bounded sub-circuit may grow 
too large to be useful. Thus we have to further partition the netlist. 
Partitioning circuits in a way that achieves high load-balancing 
and low synchronization overhead is an open problem for CAD. 
In fact, we would argue that it is the critical problem in finding 
fine-grained concurrency in CAD.  

Currently, we envision two approaches to solve this problem. 
The first approach is to quantify the interdependency among 
regions, and then partition the circuit into disjoint sub-circuits of 

similar size while minimizing the interdependency objective. 
Disjoint partitioning of the circuit allows for more parallelism, but 
will reduce quality of results. The second approach is to define 
slightly overlapping partitions of the circuit, similar to the “ghost 
regions” in structured grid problems arising in computational 
physics problems. Overlapping partitions overcome the sub-
optimality imposed by rigid partitioning, although they require 
more memory storage and more careful updates among 

overlapping partitions. In summary, to achieve fine-grained 
parallelism we must exploit the data parallelism latent in the 
circuit.  More research needs to be done to find practical methods 
for revealing this parallelism. 

The next point to consider in evaluating the potential for a 
manycore implementation of logic optimization is the memory 
footprint of an individual node in the netlist. Depending on the 
sub-problem in logic optimization, such a footprint can be as 
small as 4 bytes for technology independent logic optimization or 
as large as 4K bytes in an integrated placement-synthesis system. 
It is useful to examine this data in the context of micro-
architectural trends. Near future multicore architectures give each 

core a traditional L1 & L2 cache, and then provide a large shared 
L3 or Last Level Cache. L1 sizes are usually 32 to 64 kB, while 
L2 caches are usually around 256 to 512 kB.  Shared L3 caches 
range from 2-8 MB on die.  In contrast, it seems likely that 

manycore architectures will favor more cores on a chip and 
simpler memory hierarchies.  It may be that the L1 remains 
around 32kB, and the shared Last Level Cache remains several 
megabytes, while private L2 caches are omitted completely.  To 

make up for these simpler memory hierarchies, manycore 
architectures will utilize high bandwidth off chip memories, 
perhaps even a cache composed of stacked DRAM in the chip 
package (or even more radical 3D integration approaches) to 
provide substantial memory capacity at very high bandwidth.  
Additionally, the integration provided by having all the processors 
and memory integrated so closely will allow for much cheaper 
data sharing between processors, which should enable less 
duplication of shared data in the caches.    

For example, if the netlist node size is 4 bytes, a 32 kB cache 
can hold 8k nodes, and sizeable computations can be done very 
effectively in local L1.  However, if the node size is 4k bytes, 
most of the work will have to be done out of Last Level Cache 
and off-chip memory, which will reduce performance.  Memory 
usage and inter-processor bandwidth will be an important factor in 
determining the granularity of partitioning used in manycore logic 
synthesis.  

Parallel frameworks must be implemented well in order to be 
useful.  For example, the engineering of the agent-and-repository 
framework that houses the circuit database and schedules the 
timing optimization agents will be critical to realizing parallel 
performance. Such an agent-and-repository framework has two 
difficult invariants that must be maintained: 1) No agent corrupts 
the logical functionality of the original circuit and 2) Each agent 
may operate independently as though it were the only agent 

operating on this sub-circuit.  The first invariant ensures overall 
correct functionality, and enforcing this invariant will 
significantly simplify debugging the concurrent agents. The 
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Figure 2: Timing Agents Acting on Repository 
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second invariant dramatically simplifies the construction of the 
timing optimization agents. Thus, despite the many challenges to 
engineering such a framework, the investment in this engineering 
pays off immediately: the individual logic optimization agents 

themselves do not need to be recoded from the original sequential 

case.   
While the architecture of this framework may appear to be 

cumbersome, we believe that it nicely showcases the key elements 
of the design. By bringing out the parallelism in the underlying 
problem, we entirely obviate the need to recode the individual 
logic optimization agents themselves. We believe that an overall 
design approach that localizes managing concurrency to a few 
critical pieces, such as the database/repository, will be more 

successful than an approach that demands that parallel 
programming concerns pervade the design. 

7. CONCLUSION 
Single-chip multiprocessors are sure to impact 

computationally intensive application areas such as CAD. We 

argue that we should not focus on near-term opportunities to 
realize modest amounts of parallelism, but boldly focus on 
microprocessor targets with greater than 32 processing elements.  

When facing this challenge it becomes clear that incremental 
approaches based on thread-based programming or compiler 
optimization improvements will be inadequate to fully realize the 
performance afforded by highly parallel machines. Instead, we 
argue that CAD software must be re-architected to discover and 

express high degrees of parallelism. Following [2][3], we argue 
that the key to architecting parallel software is identifying parallel 
design patterns (known as dwarfs), and to this end we 
comprehensively mined the RTL synthesis flow to identify the 
recurrent design patterns in that flow. Despite the software 
complexity and algorithmic density in that flow, our review 
showed three design patterns predominate: graph-algorithms, 
backtracking/branch-and-bound, and linear algebra. Of these the 
most challenging design pattern to parallelize is graph algorithms. 

To explore this topic further we described a high-level 
architecture for a logic optimization framework employing graph 
algorithms.  

The development of graph partitioning algorithms that 
minimize interdependence between partitions is a pivotal problem, 
and the success of a parallel logic optimization framework rests 
heavily on it. Nevertheless, as netlists are highly data parallel and 
relatively localized, we remain optimistic that such partitioning 

approaches will be found, and that with a proper architecting of a 
central agent-and-repository database the bulk of the code 
associated with the individual logic optimization agents can 
remain unchanged. As few parallel programming experts currently 
exist, we believe a strategy that centralizes and localizes the 
burden of managing concurrency will be more successful than one 
that distributes the burden of parallel programming over the entire 
software development workforce.   

At the center of our inquiry is a simple question: Is CAD 
amenable to parallelization on manycore processors? We are 
optimistic. An integrated circuit is a static data object with 
millions of elements and is amenable to representation as a graph 
with low average out-degree and high locality. Extracting 
parallelism here should be easier than in many media applications, 
such as video decoding, which deal with streams of changing data 
with complex and unpredictable interdependencies. In short, we 

believe there are ample opportunities for discovering parallelism 
in CAD applications. Finding and demonstrating them on parallel 

computers is a timely research agenda.  
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