
Parallelizing CAD: A Timely Research Agenda for EDA
Bryan Catanzaro

Department of Electrical

Engineering and Computer Sciences

Berkeley, CA

catanzar@eecs.berkeley.edu

Kurt Keutzer
Department of Electrical

Engineering and Computer Sciences

Berkeley, CA

keutzer@eecs.berkeley.edu

Bor-Yiing Su
Department of Electrical

Engineering and Computer Sciences

Berkeley, CA

subrian@eecs.berkeley.edu

ABSTRACT

The relative decline of single-threaded processor performance,
coupled with the ongoing shift towards on chip parallelism
requires that CAD applications run efficiently on parallel
microprocessors. We believe that an ad hoc approach to
parallelizing CAD applications will not lead to satisfactory
results: neither in terms of return on engineering investment nor in
terms of the computational efficiency of end applications. Instead,

we propose that a key area of CAD research is to identify the
design patterns underlying CAD applications and then build CAD
application frameworks that aid efficient parallel software
implementations of these design patterns. Our initial results
indicate that parallel patterns exist in a broad range of CAD
problems. We believe that frameworks for these patterns will
enable CAD to successfully capitalize on increased processor
performance through parallelism.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming
D.2.11 [Software Architectures]: Patterns
J.6 [Computer-aided Engineering]: Computer-aided Design

General Terms
Algorithms, Design

Keywords

Pattern, Framework, Manycore, Parallelization

1. WHY MANYCORE PARALLELISM?
The decline of single-thread performance increases over the

past half-decade has been well documented and understood [2].
Current and future performance increases will be provided
primarily through increased on chip parallelism. Consequently,

computationally demanding applications are moving towards
parallel implementations. Movements towards parallelism in the
past were always dominated by continual improvements in single
thread performance, which made computational speedups due to
parallelism less attractive, especially when viewed from an
economic return on investment perspective. The realities of
semiconductor manufacturing today have now led the entire
industry towards parallelism in order to continue scaling

application performance.
When discussing parallel software, it is useful to distinguish

between multicore parallelism, designed for an evolutionary path
where the number of cores slowly evolves from 1!2!4!.., and
manycore parallelism, in which the ramp up of cores rises much

more quickly: 32!64!128!. Current x86 microprocessors,
such as the Intel Core 2 Duo, are an example of multicore
platforms, whereas graphics processors, such as the G80 from
Nvidia with 128 processors on a die, are an example of manycore
processors, despite not being truly general purpose.

Superficially, it appears that CAD researchers must decide
whether to pursue an implementation strategy that targets the
multicore evolutionary path or manycore parallelism. However,

parallel programmers commonly observe that programming for
greater than 32 cores is fundamentally different than programming
for smaller numbers of cores. Thus, as Moore’s Law will easily
enable 32 cores per die even on the slower multicore path, it
seems important to target manycore targets today. Although
parallelism at this scale can be difficult to extract, it will be
necessary within the near future. Therefore, as we re-architect
CAD software for parallelism, we must keep large scale

parallelism in mind.

2. COARSE-GRAINED PARALLELISM IN

CAD
Because CAD is so computationally demanding, parallelism

has been applied to CAD for some time. A few basic approaches
have broad application, such as: running a number of scripts and
choosing the best result (logic synthesis); running a variety of
different initial starting points (floorplanning, placement); running
(or generating) independent vector sequences (simulation/testing)
or Monte-Carlo simulation (capacitance extraction). It will be
important to continue to exploit such coarse-grained parallelism in

the future; however, because most of these approaches act on the
entire design at once, it is not clear that memory and I/O
capabilities associated with individual processors in multicore and
manycore architectures will efficiently accommodate this kind of
parallelism due to the heavy memory requirements associated
with processing a complete design. Thus, while we will continue
to exploit coarse grained parallelism at the system level, we must
also seek ways to exploit finer-grained parallelism with a single

processing element.

3. FINE-GRAINED PARALLELISM IN CAD
While it is easy to parallelize multiple independent runs of

CAD software, it is less clear how to parallelize a single
invocation of a CAD operation such as logic optimization, static-

timing analysis, floorplanning, or placement. Past experience in
high-performance computing as well as early attempts at
parallelizing CAD applications have shown us that simply
incrementally re-coding existing CAD software using POSIX
Threads, OpenMP, or MPI is unlikely to produce acceptable
results. Nor are there parallel programming languages or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
DAC 2008, June 8-13, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006…$5.00.

12

2.3

programming models which are mature enough to allow CAD
application developers to migrate their applications to parallel
targets in a timely manner. Improved compiler support and
implicit programming models [53] will surely help; however, we
believe that such approaches will not suffice to fully utilize future

manycore targets. Thus, our position is that CAD applications
need to be re-architected for parallel targets. This does not mean
that every significant element of CAD software needs to be
recoded. Instead, as we will see in the example in Section 6, with
the proper architectural structure, many key CAD algorithms,
such as the battery of optimizations in logic synthesis, do not need
to be rewritten. Before examining this in detail, we give a
summary of the general principles of architecting parallel

software.

4. PARALLEL SOFTWARE

ARCHITECTURE USING PATTERNS AND

FRAMEWORKS
As described by Christopher Alexander, design patterns

describe time-tested solutions to recurring problems within a well-
defined context [1]. An example of a design pattern is

Alexander’s “family of entrances” pattern, which addresses the
recurrent problem of allowing easy comprehension of multiple
entrances for a first-time visitor to a site. A pattern language is a
collection of related and interlocking patterns, constructed such
that the patterns flow into each other as the designer solves a
design problem. The pattern language is implicitly organized to
reflect a design methodology. Because every designer sees a given
problem from a unique perspective, design patterns are not

defined such that each problem has a unique path through the
pattern language. Instead, a pattern language serves as a guide to
the architect, helping to define common problems and codifying
useful solutions. In other words, a pattern language does not
impose a rigid methodology. Instead, it supports designers as they
reason about an architecture by providing a common vocabulary
to describe the problems encountered during the design process,
as well as giving reference to a collection of useful solutions.

The observation that patterns and pattern languages could be

useful for software architecture is not new; in fact there is an
established community of researchers defining pattern languages
for software architecture. While principally focused on lower-
level implementation details, one influential work on patterns for
software design is the book Design Patterns: Elements of

Reusable Object-Oriented Software, which outlined a number of
patterns useful for object-oriented programming [10]. Another
work we have found useful is an Introduction to Software

Architecture [11], which describes a variety of structural patterns
useful for organizing software. Patterns for Parallel

Programming [16] was the first attempt to systematize parallel
programming using patterns. Recently, the Berkeley View reports
[2][3] presented a set of 13 computational “dwarfs”, which are
best understood as design patterns for programming.

Patterns are conceptual tools which support a programmer’s
ability to reason about a software project, but they are not an

implementation mechanism. A programming framework is a
software environment that supports the implementation of the
solution proposed by the associated design pattern. The
difference between a programming framework and a general
programming model or language is that in a pattern framework the
customization is performed only at specified points that are
harmonious with the style embodied in the original design pattern.
An example of a successful sequential programming framework is

the Ruby on Rails framework that is based on the Model-View-
Controller pattern. Users of the framework have ample
opportunity to customize the framework but only in harmony with
the core Model-View-Controller pattern.

Frameworks include libraries, code generators, and runtime

systems, which assist the programmer with implementation by
abstracting difficult portions of the computation and incorporating
them into the framework itself. In the past, parallel frameworks
have not generally been designed by careful examination of
recurrent problems in application domains, but instead were
imposed by assumptions made by framework developers. We
believe that basing frameworks on pervasive design patterns will
make parallel frameworks more broadly applicable.

To summarize, implementing parallel software using patterns
and frameworks involves identifying the patterns that underlie
computations, constructing frameworks that assist in developing
the parallelism in a given computation while mapping well to
parallel hardware, and then using the frameworks to construct
parallel applications. To apply this approach to CAD the first step
is to identify the key design patterns in CAD. To be more specific
about this step, the next section identifies the dominant design

patterns encountered in a contemporary RTL synthesis CAD flow.

5. DESIGN PATTERNS AND

FRAMEWORKS FOR CAD

5.1 Design Patterns in CAD
In the following we perform a reasonably comprehensive

survey of the applications in a register-transfer level (RTL)
synthesis flow, and summarize the key design patterns. Our
methodology [2][3] is to first reduce an application to its key
design patterns, and then use frameworks for the design pattern to

facilitate the parallel implementation of the application.

5.1.1 Hardware-Description Language (HDL) Synthesis:
Graph Algorithms:

Given a description of a circuit in a HDL such as Verilog,
perform a syntax-directed translation and graph-rewriting rules to
create a circuit netlist. Note we refer to a graph algorithms pattern
rather than a graph traversal pattern as in [2], because problems
like graph partitioning are solved by graph algorithms but not
graph traversal.

5.1.2 Technology Independent Optimization:
Graph Algorithms:

Contemporary approaches using And-Invert-Graphs are
graph-oriented [45].
Backtrack and Branch-and-Bound:

The ESPRESSO family of algorithms [46] relies on branch-
and-bound techniques to minimize two-level logic.

5.1.3 Technology Mapping:
Graph Algorithms:

Although they use dynamic programming, techniques such as
DAGON [30] and the Lehman-Watanabe Algorithm [31] are
probably better viewed as local graph rewriting approaches than

general uses of the dynamic-programming design pattern.

5.1.4 Delay Modeling:
Dense and Sparse Linear Algebra:

Newton-Raphson methods can be used to solve the
interdependent setup/hold time of latches and registers [44]. This
method relies heavily on matrix computations.

5.1.5 Timing Analysis:
Graph Algorithms:

13

Computation for finding the critical path in a circuit is based
on computing the longest path in a graph. The computation for
identifying hold time violations is based on computing the
shortest path in a graph. Statistical considerations can be added in
this formulation.

Backtrack and Branch-and-Bound:
The elimination of false paths and the computation of the

floating-mode delay [33] require a search using techniques similar
to those employed in circuit testing (cf. 5.1.14).
Sparse Linear Algebra:

Path-based statistical static timing analysis can be formulated
as a sparse matrix problem [32].

5.1.6 Sequential Circuit Optimization:
Graph Algorithms:

Retiming involves constructing the retiming graph and

manipulating it using graph algorithms [29]. Clock schedule
optimization may be solved by traversing the circuit netlist,
updating clock information [34].

5.1.7 Floorplanning:
Graph Algorithms:

The sequence pair method [23] transforms the sequence pair
into a constraint graph, and then reconstructs the floorplanning
topology. B*-tree [6] and TCG-S [14] both manipulate graph
representations of the floorplanning topology directly.
Map Reduce:

Simulated annealing approaches to floorplanning, such as [47],
can be cast as Map Reduce operations.

5.1.8 Placement:
Dense Linear Algebra:

Most analytical placers use some iterative nonlinear objective
solvers to optimize the objective function. NTUplace3 [7] and
APlace [12] use the conjugate gradient method, while mPL6 [5]
uses the Uzawa iterative algorithm.
Graph Algorithms:

There are several placers that use graph partitioning

techniques [48] to resolve the overlapping problem among cells.
For example, Capo [17], Dragon [20], and GORDIAN [13].
Sparse Linear Algebra:

Some placers use sparse quadratic programming methods to
minimize the wire length. RQL [21], Kraftwerk[19], FastPlace3
[22], and GORDIAN [13] all apply this method.
Structured Grid:

The FastPlace3 [22] uses iterative local refinement technique

to refine the placement in a grid by the placement situation in
nearby grid.

5.1.9 Global and Detailed Routing:
Graph Algorithms:

For Steiner tree construction, FLUTE [9] traverses each net,
partitioned by its coordinates, and then maps each partition to a
pre-optimized routing table. For global routing, FastRouter2.0 [18]
and BoxRouter2.0 [8] both use rip-up-and-reroute with maze
routing to refine the routing results. DUNE is a gridless detail
router that manipulates the connection graph [24].

Dynamic Programming:
During the rip-up-and-reroute phase, FastRoute2.0 [18] uses

monotonic routing, and DpRouter [4] uses dynamic pattern
routing. Both are dynamic programming based approaches.
Backtrack and Branch-and-Bound:

BoxRouter2.0 [8] uses integer programming to assign wires
into available spaces.

5.1.10 DFM
Graph Algorithms:

To detect and correct alternating-aperture phase shift masking
problems Chiang el al. [27] use a conflict cyclic graph and an
embedded planar graph to represent the layout topology.
Map Reduce:

RADAR [26] uses a lithography hotspot map (LHM) to

approximate the intensity of OPC at different regions. When
calculating the LHM, RADAR transforms lithography intensity at
nearby blocks, collects all information, then it reduces them to the
LHM of the specified region.

5.1.11 Design Rule Checking and Compaction:
Graph Algorithms:

The scanline algorithm [25] traverses the layout of the circuit
based on the coordinates of the cells. The resulting design rule
constraint graph may be compacted using longest path graph
traversal [49].

5.1.12 Model Checking:
Graph Algorithms and Backtrack/Branch-and-Bound:

Symbolic model checkers, such as NuSMV2 [41], provide
both BDD-based and SAT-based approaches to solve the problem.

5.1.13 Equivalence Checking:
Graph Algorithms:

Malik et al. propose a BDD-based approach [40] for
equivalence checking.
Backtrack and Branch-and-Bound:

Goldberg et al. use a SAT-based approach [39] for
equivalence checking. Contemporary approaches judiciously

apply both BDD and backtracking-based techniques.

5.1.14 ATPG:
Backtrack and Branch-and-Bound:

PODEM [35] was among the first to use backtrack and
branch-and-bound techniques to generate test patterns, and
Larrabee uses a SAT-based approach [50].

5.1.15 Delay Testing:
Graph Algorithms:

The hazard-free robust path delay fault testing method [38]
traverses the circuit graph, generates its ENF, and then finds
testing vectors.

5.1.16 HDL Simulation:
Graph Algorithms:

Parallel HDL simulation has already been explored using

agents in a graph structure [51].

5.1.17 Circuit Simulation:
Dense Linear Algebra and Sparse Linear Algebra:

SPICE [43] uses linear algebra to solve the Kirchoff voltage
and current laws, branch equations, nonlinear equations, and
differential equations involved in circuit simulation.

5.2 CRITICAL PATTERNS AND

FRAMEWORKS
The prior section indicates that much of CAD can be

supported by three key design patterns: graph algorithms, branch-
and-bound search, and linear algebra. Linear algebra is the design
pattern whose parallelism is best understood [54], so we will not
discuss it further. Branch and bound algorithms focus on the
search of very large spaces, so parallel frameworks such as [52]
have been developed to accelerate the search process. The load-
balancing and data sharing problems encountered by previous
attempts at such frameworks will be alleviated by the high degree

of integration which characterizes future manycore systems,
enhancing the usefulness of parallel branch-and-bound
frameworks. The graph algorithms pattern is by far the most

14

widely used pattern in CAD. Unfortunately, it is currently
relatively weakly supported by parallel frameworks [55].
Therefore, the rest of this paper explores the potential for
developing a parallel graph-algorithms framework that can be
applied to parallelize CAD. In particular, we explore how the

concepts of Section 5 can be employed to build a parallel
framework for logic optimization.

6. A PARALLEL FRAMEWORK FOR

LOGIC OPTIMIZATION
In this section we work through a high-level architecture for a

parallel logic-optimization framework. At the top level, the
framework follows the pipe-and-filter structural pattern [11] as is

shown in Figure 1. For simplicity’s sake we presume the input is a
textual description of the netlist to be optimized together with user
constraints regarding timing, area, and power. This textual format
is parsed, an internal database is built, and then the core function
of the framework, the actual logic optimization process, is
performed. Finally, an optimized netlist is produced. Very modest
amounts of parallelism are available at the steps of input
processing, database building, and output; however, we presume

that some parallelism is available at these steps and, further, that
the time of these steps is modest relative to the time devoted to
optimization.

Figure 1: A Basic Flow

The representation of the circuit in the database/repository is the
key to realizing significant parallelism. At the core of the system
is an agent-and-repository structural pattern [11] illustrated in
Figure 2. In this pattern the access of independent agents to the
central repository is scheduled by a repository manager. In
general, to provide fine-grained parallelism for graph
manipulation tasks such as logic optimization, the graph must be

partitioned. The first step toward creating this partitioning is to
divide the netlist into register-bounded sub-circuits. Partitioning
the netlist in this fashion allows the timing optimization agents to
operate independently, which maximizes parallelism of the
optimization. However, there are many engineering challenges to
developing a register-bounded partitioning of a circuit such as:
multi-cycle paths, latch-based timing schemes, multi-modal
operation, and tri-state enables. As a result of these influences the

number of gates in a single register-bounded sub-circuit may grow
too large to be useful. Thus we have to further partition the netlist.
Partitioning circuits in a way that achieves high load-balancing
and low synchronization overhead is an open problem for CAD.
In fact, we would argue that it is the critical problem in finding
fine-grained concurrency in CAD.

Currently, we envision two approaches to solve this problem.
The first approach is to quantify the interdependency among
regions, and then partition the circuit into disjoint sub-circuits of

similar size while minimizing the interdependency objective.
Disjoint partitioning of the circuit allows for more parallelism, but
will reduce quality of results. The second approach is to define
slightly overlapping partitions of the circuit, similar to the “ghost
regions” in structured grid problems arising in computational
physics problems. Overlapping partitions overcome the sub-
optimality imposed by rigid partitioning, although they require
more memory storage and more careful updates among

overlapping partitions. In summary, to achieve fine-grained
parallelism we must exploit the data parallelism latent in the
circuit. More research needs to be done to find practical methods
for revealing this parallelism.

The next point to consider in evaluating the potential for a
manycore implementation of logic optimization is the memory
footprint of an individual node in the netlist. Depending on the
sub-problem in logic optimization, such a footprint can be as
small as 4 bytes for technology independent logic optimization or
as large as 4K bytes in an integrated placement-synthesis system.
It is useful to examine this data in the context of micro-
architectural trends. Near future multicore architectures give each

core a traditional L1 & L2 cache, and then provide a large shared
L3 or Last Level Cache. L1 sizes are usually 32 to 64 kB, while
L2 caches are usually around 256 to 512 kB. Shared L3 caches
range from 2-8 MB on die. In contrast, it seems likely that

manycore architectures will favor more cores on a chip and
simpler memory hierarchies. It may be that the L1 remains
around 32kB, and the shared Last Level Cache remains several
megabytes, while private L2 caches are omitted completely. To

make up for these simpler memory hierarchies, manycore
architectures will utilize high bandwidth off chip memories,
perhaps even a cache composed of stacked DRAM in the chip
package (or even more radical 3D integration approaches) to
provide substantial memory capacity at very high bandwidth.
Additionally, the integration provided by having all the processors
and memory integrated so closely will allow for much cheaper
data sharing between processors, which should enable less
duplication of shared data in the caches.

For example, if the netlist node size is 4 bytes, a 32 kB cache
can hold 8k nodes, and sizeable computations can be done very
effectively in local L1. However, if the node size is 4k bytes,
most of the work will have to be done out of Last Level Cache
and off-chip memory, which will reduce performance. Memory
usage and inter-processor bandwidth will be an important factor in
determining the granularity of partitioning used in manycore logic
synthesis.

Parallel frameworks must be implemented well in order to be
useful. For example, the engineering of the agent-and-repository
framework that houses the circuit database and schedules the
timing optimization agents will be critical to realizing parallel
performance. Such an agent-and-repository framework has two
difficult invariants that must be maintained: 1) No agent corrupts
the logical functionality of the original circuit and 2) Each agent
may operate independently as though it were the only agent

operating on this sub-circuit. The first invariant ensures overall
correct functionality, and enforcing this invariant will
significantly simplify debugging the concurrent agents. The

netlist netlist parse

netlist

build

data

model

optimize

netlist

CIRCUIT

DATABASE

Timing

optimization 1

Timing

optimization 2

Timing

optimization 3

Timing

optimization !"

....

Figure 2: Timing Agents Acting on Repository

15

second invariant dramatically simplifies the construction of the
timing optimization agents. Thus, despite the many challenges to
engineering such a framework, the investment in this engineering
pays off immediately: the individual logic optimization agents

themselves do not need to be recoded from the original sequential

case.
While the architecture of this framework may appear to be

cumbersome, we believe that it nicely showcases the key elements
of the design. By bringing out the parallelism in the underlying
problem, we entirely obviate the need to recode the individual
logic optimization agents themselves. We believe that an overall
design approach that localizes managing concurrency to a few
critical pieces, such as the database/repository, will be more

successful than an approach that demands that parallel
programming concerns pervade the design.

7. CONCLUSION
Single-chip multiprocessors are sure to impact

computationally intensive application areas such as CAD. We

argue that we should not focus on near-term opportunities to
realize modest amounts of parallelism, but boldly focus on
microprocessor targets with greater than 32 processing elements.

When facing this challenge it becomes clear that incremental
approaches based on thread-based programming or compiler
optimization improvements will be inadequate to fully realize the
performance afforded by highly parallel machines. Instead, we
argue that CAD software must be re-architected to discover and

express high degrees of parallelism. Following [2][3], we argue
that the key to architecting parallel software is identifying parallel
design patterns (known as dwarfs), and to this end we
comprehensively mined the RTL synthesis flow to identify the
recurrent design patterns in that flow. Despite the software
complexity and algorithmic density in that flow, our review
showed three design patterns predominate: graph-algorithms,
backtracking/branch-and-bound, and linear algebra. Of these the
most challenging design pattern to parallelize is graph algorithms.

To explore this topic further we described a high-level
architecture for a logic optimization framework employing graph
algorithms.

The development of graph partitioning algorithms that
minimize interdependence between partitions is a pivotal problem,
and the success of a parallel logic optimization framework rests
heavily on it. Nevertheless, as netlists are highly data parallel and
relatively localized, we remain optimistic that such partitioning

approaches will be found, and that with a proper architecting of a
central agent-and-repository database the bulk of the code
associated with the individual logic optimization agents can
remain unchanged. As few parallel programming experts currently
exist, we believe a strategy that centralizes and localizes the
burden of managing concurrency will be more successful than one
that distributes the burden of parallel programming over the entire
software development workforce.

At the center of our inquiry is a simple question: Is CAD
amenable to parallelization on manycore processors? We are
optimistic. An integrated circuit is a static data object with
millions of elements and is amenable to representation as a graph
with low average out-degree and high locality. Extracting
parallelism here should be easier than in many media applications,
such as video decoding, which deal with streams of changing data
with complex and unpredictable interdependencies. In short, we

believe there are ample opportunities for discovering parallelism
in CAD applications. Finding and demonstrating them on parallel

computers is a timely research agenda.

8. ACKNOWLEDGEMENTS
Thanks to Jacob Avidan, Alan Mishchenko, Richard Rudell,

and Tom Spyrou for discussion on various topics related to the
logic optimization framework described here. Thanks to Patrick
Groeneveld, Desmond Kirkpatrick, Noel Menezes, Sachin
Sapatnekar and Leon Stok for critical comments that improved
this paper. Tim Mattson deserves special thanks for helping us to
understand dwarfs in the larger contexts of design patterns and
pattern languages. The authors acknowledge the support of the

Gigascale Systems Research Center, one of five research centers
funded under the Focus Center Research Program, a
Semiconductor Research Corporation program.

9. REFERENCES
[1] C. Alexander et al. A Pattern Language: Towns, Buildings,

Construction. Oxford University Press, USA, 1977.

[2] K. Asanovic et al. The landscape of parallel computing
research: a view from Berkeley. Technical report, Electrical

Engineering and Computer Sciences, University of
California at Berkeley, 2006.

[3] K. Asanovic et al. The landscape of parallel computing
research: a view from Berkeley 2.0. Technical report,
Electrical Engineering and Computer Sciences, University of

California at Berkeley, 2007.

[4] Z. Cao et al. Dprouter: A fast and accurate dynamic-pattern-
based global routing algorithm. ASPDAC '07:, pp. 256-261,
2007.

[5] T. F. Chan et al. MPL6: a robust multilevel mixed-size

placement engine. ISPD '05, pp. 227-229, 2005.

[6] T.-C. Chen, Y.-W. Chang, and S.-C. Lin. Imf: interconnect-
driven multilevel floorplanning for large-scale building-

module designs. ICCAD '05, pp. 159-164, 2005.

[7] T.-C. Chen et al. A high-quality mixed-size analytical placer
considering preplaced blocks and density constraints.
ICCAD '06, pp. 187-192, 2006.

[8] M. Cho et al. Boxrouter 2.0: architecture and implementation

of a hybrid and robust global router. ICCAD '07, pp. 503-
508, 2007.

[9] C. Chu and Y.-C. Wong. Fast and accurate rectilinear steiner
minimal tree algorithm for vlsi design. ISPD '05: pp. 28-35,

2005.

[10] E. Gamma et al. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional,
USA, 1994.

[11] D. Garlan and M. Shaw. An introduction to software

architecture. Technical report, Pittsburgh, PA, USA, 1994.

[12] A. B. Kahng and Q. Wang. A faster implementation of
aplace. ISPD '06, pp. 218-220, New York, NY, USA, 2006.

[13] M. Kleinhans et al. VLSI placement by quadratic
programming and slicing optimization. IEEE Trans. on CAD,
10(3): 356-365, 1991.

[14] J.-M. Lin and Y.-W. Chang. Tcg-s: orthogonal coupling of

p*-admissible representations for general floorplans. DAC
'02, pp. 842-847, 2002.

[15] S. MacDonald et al. From patterns to frameworks to parallel
programs. Parallel Computation, 28(12):1663-1683, 2002.

16

[16] T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns

for Parallel Programming. Addison-Wesley Professional,
USA, 2004.

[17] A. N. Ng et al. Solving hard instances of floorplacement.

ISPD '06: pp.170-177, 2006.

[18] M. Pan and C. Chu. Fastroute 2.0: A high-quality and
efficient global router. Asia South Pacific-DAC '07: pp. 250-

255, 2007.

[19] P. Spindler and F. M. Johannes. Fast and robust quadratic
placement combined with an exact linear net model. In
ICCAD '06: pp. 179-186, 2006.

[20] T. Taghavi, et al. Dragon2006: blockage-aware congestion-

controlling mixed-size placer. ISPD '06, pp. 209-211, 2006.

[21] N. Viswanathan et al. Rql: global placement via relaxed
quadratic spreading and linearization. DAC '07, pp. 453-458,
2007.

[22] N. Viswanathan, M. Pan, and C. Chu. Fastplace 3.0: A fast
multilevel quadratic placement algorithm with placement
congestion control. Asia South Pacific-DAC '07, pp. 135-
140, 2007.

[23] H. Murata et al. VLSI Module Placement Based on

Rectangle-Packing by the Sequence Pair, IEEE Trans.on
CAD 15(12), pp. 1518-1524, 1996.

[24] J. Cong, J. Fang, and K. Khoo. DUNE: a multi-layer gridless

routing system with wire planning. ISPD’00, pp.12-18, 2000.

[25] E. Carlson, R. Rutenbar. A Scanline Data Structure Processor
for VLSI Geometry Checking, IEEE Trans. on CAD 6(5),
pp. 780-794, September 1987

[26] J. Mitra, P. Yu, D. Pan. RADAR: RET-aware detailed

routing using fast lithography simulations, DAC’05, pp. 369-
372, 2005.

[27] C. Chiang et al. Fast and efficient phase conflict detection

and correction in standard-cell layouts. ICCAD’05, pp. 149-
156, 2005.

[28] N. Saluja and S. Khatri. A robust algorithm for approximate
compatible observability don't care (CODC) computation.
DAC’04, pp 7-11, 2004.

[29] C. Leiserson and J. Saxe. Retiming Synchronous Circuitry,

Algorithmica, vol.6, pp.5-35, 1991.

[30] K. Keutzer. DAGON: technology binding and local

optimization by DAG matching. DAC’87, pp. 341-347,
1987.

[31] E. Lehman et al. Logic decomposition during technology
mapping, IEEE Trans. on CAD 16(8):813-834, 1997.

[32] A. Ramalingam et al. An accurate sparse matrix based

framework for statistical static timing analysis. DAC’06, pp.
231-236, 2006.

[33] S. Devadas, et al. Computation of floating mode delay in
combinational circuits: practice and implementation, IEEE

Trans. on CAD 12(12):1924-1936, 1993.

[34] N. Shenoy, R. Brayton, and A. Sangiovanni-Vincentelli.
Graph algorithms for clock schedule optimization.
ICCAD’92, pp. 132-136, 1992.

[35] P. Goel and B. Rosales, PODEM-X: An automatic test
generation system for VLSI logic structures. DAC’81, 1981.

[36] H. Fujiwara. FAN: A Fanout-Oriented Test Pattern

Generation Algorithm, Proc. Int'l Symp. Circuits and
Systems, pp. 671-674, 1985.

[37] S.-T. Cheng, R. Brayton. Synthesizing multi-phase HDL
programs, Verilog HDL Conference, pp. 67-76, 1996.

[38] S. Devadas, K. Keutzer, S. Malik, Delay computation in
combinational logic circuits: theory and algorithms,
ICCAD’91, pp. 176-179, 1991.

[39] E. Goldberg, M. Prasad, and R. Brayton. Using SAT for

combinational equivalence checking. DATE’01, pp. 114-121,
2001.

[40] S. Malik et al. Logic Verification Using Binary-Decision
Diagrams in a Logic Synthesis Environment. ICCAD’88, pp.
6-9, 1988.

[41] A. Cimatti, et al. NuSMV 2: An OpenSource Tool for
Symbolic Model Checking, CAV’02, pp. 359-364, 2002.

[42] A. Kolbi, J. Kukula, R. Damiano, Symbolic RTL simulation,

DAC’01, pp. 47-52, 2001.

[43] L. Nagel. SPICE2: A Computer Program to Simulate
Semiconductor Circuits, Memorandum No. ERL-M520,
University of California, Berkeley, May 1975.

[44] S. Srivastava and J. Roychowdhury. Interdependent Latch

Setup/Hold Time Characterization via Euler-Newton Curve
Tracing on State-Transition Equations, DAC’07, pp. 136-
141 , 2007.

[45] A. Mishchenko, S. Chatterjee and R. Brayton, DAG-aware

AIG rewriting: a fresh look at combinatorial logic synthesis,
DAC’06, pp. 532-535, 2006.

[46] R. Brayton et al. Logic Minimization Algorithms for VLSI
Synthesis, Kluwer, Boston, 1984.

[47] T.-C. Chen and Y.-W. Chang. Modern floorplanning based
on fast simulated annealing, ISPD’05, pp. 104-112, 2005.

[48] C. Fiduccia, R. Mattheyses. A Linear-Time Heuristic for

Improving Network Partitions, DAC’82, pp. 175-181, 1982.

[49] M. Hsueh. Symbolic layout and compaction, PhD Thesis,
University of California, Berkeley, 1980.

[50] T. Larrabee. Test pattern generation using Boolean

satisfiability, IEEE TCAD, 11, 1, pp. 4 - 15, 1992.

[51] V. Krishnaswamy, P. Banerjee. Actor Based Parallel VHDL
Simulation Using Time Warp, Parallel and Distributed
Simulation 1996, pp. 135-142.

[52] A. Stam. A Framework for Coordinating Parallel Branch and
Bound Algorithms, LNCS Coordination Models and
Languages, pp. 523-532, 2002.

[53] W.-M. Hwu et al. Implicitly parallel programming models

for thousand-core microprocessors, DAC’07, pp.754 – 75.

[54] Anderson, E., et al., 1999 LAPACK Users' Guide (Third
Ed.). Society for Industrial and Applied Mathematics.

[55] Lumsdaine, A., et al., Challenges in Parallel Graph

Processing. Parallel Processing Letters, 17(1):5--20, 2007.

17

